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Abstract  

By distinguishing between the metric of a Riemannian geometry and the interval defining 
function it is demonstrated that both Einstein's gravitational field equations and Maxwell's 
electromagnetic field equations can be generated from a single geometry. 

1. Introduction 

The aim of any physical theory is to provide a fully consistent formalism 
that describes observed events and does so with a minimum of 6 priori postu- 
lates that are external to the actual structure of the theory. Indeed, the mode 
of attack in the improvement or the alteration of a theory is often based upon 
the elimination and incorporation of as many of these h priori postulates as is 
possible. However, one of the more difficult aspects of theory construction is 
the determination of which statements within the theory are founded directly 
upon h priori postulates as opposed to those statements which are endemic to 
the theory. 

With the above discussion in mind consider the expression for the interval 
ds between two points x i and x i + dx  i within a Riemannian geometry (see 
footnote 1) 

as2 = gi] dxt  dxJ (1.1) 

Such a structure is a natural extension from Euclidean geometry which is based 
upon the Pythagorean interval and indeed, under the appropriate conditions 
Riemannian geometry and Euclidean geometry coincide. 

I The following discussion is restricted to four-space, the indices i running through 0, 1, 
2,3. 
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In equation (1.1) the functions gtj are collectively referred to as the metric 
and they constitute a standard of interval measure within the geometry. By 
virtue of  the fact that 

dx i dx i = dx i dx i (1.2) 

the metric gi] is necessarily symmetric. That is 

g~j = gje (1.3) 

Reconsidering equation (1.1) it can be seen that it is possible to define the 
interval ds by 

ds2 = gii dxi dx] (1.4) 

where the ~q will now be called, not the metric but the intervat defining 
function. 

The first ~ priori assumption that is then made about expression (1.4) within 
Riemannian geometry is that the interval defining function is the metric with 
the consequence that the interval defining function is necessarily symmetric. 
If we dispense with this assumption then there is no requirement for the sym- 
metry of~q. Accordingly, in all generality, the interval defining function is 
written as the sum of its symmetric and asymmetric parts. 

Clearly, 

,~i=gi j  + % 

= g / i  - h / i  ( a . 5 )  

ds2 = g,i] dxi dX] = gij dxi dx] (1.6) 

and it is at this point that we identify gij as the metric of the geometry (see 
footnote 2). The fact that gii and gij have the same effect when the interval 
is constructed indicates that during the course of such a construction hi/is 
undetectable. However, its undetectability gives no reason to assume its non- 
existence unless its undetectability is absoIute. In fact, hi] is detectable. 

If, given the interval defining function gi], a hyperparallelepiped is con- 
structed from adjoining surfaces dS ~1, it is readily seen that the total flux df  
of~ij across all the surfaces of  the hyperparallelepiped is given by (Eddington) 

C~ 
df  = ~ ~ij dS ij 

C¢ 
= ~ hij dS q (1.7) 

where the constant a is introduced to balance the dimensions on either side of 
the equation. 

2 There is no doubt at all that the metric of the real world is symmetric and so only those 
geometries with a symmetric metric are of present interest, 
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2. The  Geomet ry  

From a consideration of equation (1.1), Einstein was able to generate, within 
Riemannian geometry, a function of the metric and its derivatives that was 
both symmetric and conserved, Gii. That is 

Nil = G]i (2.1) 

and 

G/;j -- o ( 2 . 2 )  

Accordingly by the principles of identification (Eddington, 1965; Misner, Thorne, 
and Wheeler, 1973), Einstein was able to state 

Vii = ~rij (2.3) 

where Ti] is the stress-energy.momentum Tensor which is the source of a 
gravitational field described by the geometry gii. The constant ~ being chosen 
in order to balance the dimensions on either side of the equation. 

By changing the starting point of the Riemannian geometry from equation 
(1.1) to equation (1.6) the natural question arises: 'Can absolutely conserved 
quantities be generated from the hg in like manner to those obtained from 
the gij? 

The construction of Gq will be briefly discussed first. 
It is found that given an arbitrary contravariant vector A i located at x i then 

the change in the vector which results from its parallel displacement to x i + dx  i 

is given as (Landau and Lifshitz (1965)) 

5A i = _ I ~ k A  ] dx  x (2.4) 

where the F}k are the usual Christoffel symbols. I f A  i is parallely transported 
around an infinitesimal closed contour then the total change i n A  i upon arrival 
back at the starting point is 

zx/t i = ~ ~A i (2.5) 
J 

which by an application of Stoke's theorem yields 

zx,4i = _2RklmJ~ i A k A S  lm (2.6) 

where A S  Im is the surface enclosed by the infinitesimal contour. R~trn is the 
Riemann tensor from which is constructed Gi] - the  Einstein tensor. 

If, now, the vector A i and the displacement dx i are used to define the 
surface 

doi]= A i dx  ] _ A ] dx  i (2.7) 
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then the flux of~ij threading the hyperparallelepiped bounded by the surfaces 
doZJ is given as 

ot 
dr= ~ hij do  ij 

= c,h~jA ~ dx  i (2.8) 

As A i is parallely transported around the infinitesimal closed contour then the 
total flux threading the infinitesimal volume generated by the do  ij is given to 
first order as 

A f =  o~ f hi jA i dx  i (2.9) 

which by an application of Stoke's theorem yields 

ot 
A f  = ~ [(huAi),m - (hu,,Ai),t] AS  ' ' l  (2.10) 

to first order accuracy. Using equation (2.4) it is then found that 

ot m 
A f =  ~ [hiz, m - him, l + h k m P U  - hklP~,,,] A l A S  ' ' l  

_ ot i ~ s m  I (2.11) - ~ U~lm A 

From a consideration of the tensor Ham it is easily seen that 

Hilm = hll, m - hktP~m - him,t + hlonP~l 

= hil;m - him;t (2.12) 

where the semicolon denotes covariant differentiation. Contracting Ham it is 
seen that 

j '*z i ,m = hl,,~ - & , l  

= -hlm;l (2.13) 

since 

Thus 

and hence 

gilhil;m = (gilhil); m = 0 (2.14) 

(gtlHilm); k 1 (2.15) = -hm;l;l¢ 

gmk(glIHilm); k lk = - - h ; l ; k  

= 0 (2.16) 
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It is then immediately seen that the vector 

ptc = gmkgitHurn __ _h;ttlc (2.17) 

is a conserved quantity in that 

Pfk=O (2.18) 

Using the aforementioned principles of identification the vector pk is identified 
with the four current jk,  that is 

Pk = TJk (2.19) 

with the consequence that the tensor hq is identifiable with Maxwell's electro- 
magnetic field tensor FiI so that 

(2.20) 

Equation (2.20) generates two of Maxwell's equations and from a Bianchi-type 
identity the remaining two are generated, namely 

Hil m + Hmi I + Hlm i = 0 (2.21) 

that is 

Ftl;m + Fmi;t + Flm;i = 0 (2.22) 

where 

F ,  = Kj;i - K i ,  (2.23) 

Ki being the electromagnetic four potential. 
This latter condition (2.23) is necessary by definition of the flux d f i n  

equation (2.8). The flux emanates through a collection of surfaces bounded by 
A i and dx i and since it is possible to choose different surfaces all bounded by 
the same A i and dx i then by Stoke's theorem, equation (2.8) will only be 
consistent if the co-factor of da ij is a curl. 

3. Conclusion 

As an immediate consequence of removing the ~ priori assumption that the 
interval defining function is the metric of our geometry it is possible to generate, 
from a single geometry, both Einstein's field equations and Maxwell's covariant 
field equations. At first sight it may seem surprising that they appear to be 
completely uncoupled once we uncouple the symmetric and asymmetric parts 
of the interval defining function. In fact this is not so; both fields are inextric- 
ably coupled via the Einstein-Maxwell field equations. 

It has been the aim in past attempts at unified field theories to create a 
geometry whereby the Maxwell stress tensor is actually contained within the 
geometry rather than having to he separately deduced alongside the stress- 
energy-momentum tensor representing the distribution of matter (Eddington, 
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1965). However, it can now be seen that the gravitational field and the electro- 
magnetic field are two quite separate entities, the former being symmetric and 
the latter asymmetric. As a result, the Einstein field equations deal only with 
gravitational consequences of the effective mass of energy distributions and 
that is, indeed, what the Maxwell stress tensor is- the effective mass of the 
energy.stress distribution of the electromagnetic field. Thus, it exists on the 
same side of Einstein's equation as the matter Tensor as of right and not as of 
an inability to incorporate it into the other side of the equation via the geo- 
metry. Hence, as regards the unified gravitational effects of matter distributions 
and electromagnetic fields, the Einstein equations are already unified. 

The complete set of field equations are then 

Gii = ~ [Tii (matter) + Tij (electromagnetic)] (3.1) 

F,.~" = 7fl (3.2) 

Fii;k + Fgi;j + Fjk;i = 0 (3.3) 

the equation of motion (Misner, Thorne, and Wheeler, 1973) and the equation 
of continuity falling from the field equations themselves. 

It may be thought that any asymmetric function can be added to the metric 
to form the interval defining function but to counter this thought reference 
must be made to an argument given by Synge (1966). Given Einstein's field 
equations it is always possible to insert any metric and so obtain the corre- 
sponding Einstein tensor. However, when this tensor is correlated against the 
energy momentum tensor, more often than not the geometry so postulated 
corresponds to a negative energy distribution. The geometry is not physically 
realizeable. The same argument applies to h/j-we only select the actual of all 
possible worlds. From this argument follows the deduction that given an 
electromagnetic field it is not possible to have a Minkowskian metric. If a 
Minkowskian metric is demanded in the presence of  an electromagnetic field 
then equation (3.1) would not be satisfied. Consequently, the electromagnetic 
field equations as originally given by Maxwell are only approximately true for 
small fields, the correct equations being the covariant equations (3.2) and 
(3.3). 
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